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I - Synergies of CMB and Exoplanets Data Analysis
q Step I:

§ Identify the synergies between:
1. Detection + characterization of point sources and SZ clusters in CMB data
2. Detection + characterization of exoplanets in direct imaging data

Ø For both cases there is the “noise” or “systematics” component that can mimic the signal: 
CMB and speckles 

§ In 1 –> background: 

§ CMB (correlated noise), instrumental noise (assumed white) and diffuse 
foreground emission (Non-Gaussian, ignored here as it is treated separately),.. 

§ In 2 –> background:

§ Speckles (stellar PSF), instrumental noise (assumed white),...
• Step II: 

§ Phrase the detection and characterization within a Bayesian framework 2

Point Sources 

Exoplanets



Bayesian
What does it really mean?

q What does it mean to recast the problem of planet detection and characterization into a 
Bayesian perspective?

A. The Bayesian framework entails defining the following key ingredients:
a data model       +      a Likelihood shape       +      model parameter priors

B. Next apply Bayes Theorem – to retrieve the probability distribution of the model parameters: 

Bayes Theorem           Posterior distributions of the model   +   Best Fit models

L(d)=P(d|Θ,H)D(x)=s(x)+n(x) Π(Θ)=P(Θ|H)

P(Θ|d,H) =P(d|Θ,H) P(Θ|H)/ P(d|H)

P(Θ|d,H) eg. Maximum Likelihood 

Inference à Parameter estimation à

Model Selection à Evidence is crucial E=P(d|H) =  Z

Ignored

Expectation of the likelihood over the prior à



Bayesian Inference
Basic tools

q In contrast to parameter estimation problems à in model selection the evidence takes
central role and is simply the factor required to normalize the posterior:

§ The evidence automatically implements Occam’s razor:
A simpler theory with compact parameter space will have a larger evidence than a more 

complicated one, unless the latter is significantly better at explaining the data.
§ Model selection between two models H0 and H1 can be decided by comparing their respective 

posterior probabilities given the observed data set d:

Pr(H1)/ Pr(H0) = prior probability ratio for the models

Evaluation of this multidimensional Integral is a 
challenging numerical task – resort to sampling 
techniques: MCMC, Multinest, (Sivia &Skilling 2006; 
Feroz et al. 2009), etc. or model the posterior as a 
multivariate Gaussian centered at its peak(s) and apply 
the Laplace formula (Hobson, Bridle & Lahav 2002).

Ev
ide
nce



• In direct imaging data, the image is made up of stellar PSF, noise, and an astronomical 
signal, such as a planet in the image

• The goal of most of current methodologies for processing these images involves 
modelling the PSF/residual background, subtracting it from the target image, and 
looking for bright point sources as planets 

– The search/detection is conducted within a frequentist perspective
• A threshold is set a priori

• This work
– The search/detection is conducted within a Bayesian framework

• Bayesian decision theory – Evidence based Model Selection

Direct Imaging – background
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An example: KLIP
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Target image (T) is made up of the background, Point Spread Function (PSF) from the 
star, and the astronomical source (A).

Epsilon is either 0 or 1, depending on whether or not there is the astrophysical source in 
the pixel (indexed by n). Note these are all 1-D arrays.

Goal: Model and subtract it from the target image to get the planet.

The way we construct the stellar PSF models is 
by using Principal Component Analysis (PCA)
Ie create a new basis that correspond to the 
most variability (spread) amongst correlated points

Graphically, we then end up with new axes that form a new 
basis that makes these points uncorrelated
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Choosing the reference images involves choosing 
the set of images where any potential planet in the 
image would have moved the least amount, so that 
the variation seen in the images is due to the 
stellar PSF. This is calculated based on the star’s 
coordinates and the parallactic angle.

Black circles represent the star, blocked by the 
coronagraph. The orange is the residual stellar 
PSF. The green is a particular location in the 
image, corresponding to a test location around the 
star which has moved with respect to the star due 
to the sky rotating in the frame over time.

A
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B

An example: KLIP



Constructing the KLIP
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Stack the reference images in time, and compute the covariances of the pixels:

We now change dimensionality to construct an orthogonal basis whose vectors show the 
pattern of greatest variations, in descending order. These KL modes are constructed by: 

Where CK are the eigenvectors of the covariance matrix and R is a reference image. The 
resulting ZKLk vectors are orthogonal and characterize the modes of variability.

Here we use PyKLIP to get the KL modes: https://pyklip.readthedocs.io/en/latest/index.html

Say the blue dots are pixel values and Z1 and Z2 are the orthogonal KL mode vectors

Projecting the blue dots (pixels) onto each axis tells us how much variability lies                                          
along that mode, or how much variation lies along those sets of pixels

https://pyklip.readthedocs.io/en/latest/index.html


Model of stellar PSF
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Finally, we get a best-estimate model for the stellar PSF: 

Where KKLIP is some limit where we cut off the KL modes. A statistical method for 
determining this limit would be future work.

The inner product above is simply a scalar characterizing the magnitude of the variability in 
that mode.

Assuming KKLIP is the optimal number, we now have a full mathematical description of the 
stellar PSF.



Using Gemini Planetary Imager Data

10

Satellite spots are manually created in the optics, the 
locations of which on the CCD are mentioned in the FITS 
header. 

The satellite spots for the image are averaged across all 
frames for that wavelength. Since the satellite spots are 
formed as point sources, this serves as a model of the 
instrumental PSF. 

Note that the PSFs are NOT modelled as simply Gaussian 
approximations.

Locations of satellite spot PSFs circled 
in green

Actual GPI instrumental PSF à



• A noise-subtracted image, with a location of a potential planet in mind
• A model of the instrumental PSF, which will reflect how the planet will appear in the 

image

What we have now:
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• We have a guessed location for the planet
• We use forward modeling to get more accurate astrometry using a model of the 

planet - Essentially, forward modeling tackles the question: 
How would a planet appear if it were truly in the image?



Bayesian Detection & Characterization

12

§ Create single image from mean-combining temporal and frequency data slices
§ Construct the data model for the co-added data
§ Construct the Likelihood using approach followed in KLIP-FM 

• Model the likelihood as a Gaussian of the residuals R :

D = data, planet model = α F(xp,yp), F = fitting region( a rectangle fixed on the location of 
the planet in the data). The flux, F, is the modelled instrumental PSF from the forward 
modeling, scaled to the data with the scale factor α

• For the residual speckles, we must consider correlated background

• Where C is the Matern covariance function: (Wang et al. 2016)

§ Apply Nested sampling to get evidence of competing models and posterior distributions 
of the model parameters

•



• We will show that  it is possible to detect dim sources

• This now moves onto the problem of characterization

• We have detected something that minimizes the residuals, but is it more likely to be a 
planet or still background noise?

Signal or noise? 
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To do this, we require 2 models
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We run two models on the same location and compare the evidences.

The hypothesis (planet) model uses the forward model with α as a parameter, and 
corresponds to a planet present in the image. 

The null hypothesis is α = 0 and thus means a planet is not present within the prior 
bounds.

With strong enough evidence for the planet model as compared to the null hypothesis, the 
null hypothesis can be rejected and it can be claimed with a degree of confidence that a 
planet is present.



H1: Planet Model

We compute the evidence as:

H0: No Planet Present

• i.e. model the correlated noise

• Note that here, our likelihood is simply 
the likelihood of just the data with the 
Matern covariance matrix

– In effect, 𝛼 = 0

• Evidence:

Good question!

What do you mean “compare the evidences of the models”?
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• To compute the evidence term, we use nested sampling (Skilling 2004)
• Nested sampling turns a multidimensional space into a likelihood function of the 

probability getting that likelihood or greater, thus transforming this multidimensional 
integral into an integral over one dimension

• Drops N samples in prior space, computes the corresponding likelihoods, and banks 
the lowest likelihood value

How do we compute this evidence term?
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• PyMultiNest is a python wrapper for a Fortran code that does nested sampling given 
a likelihood model and priors (PyMultiNest: Johannes Buchner, MultiNest: Feroz et 
al 2008)

• I implemented this nested sampling adaptation into the PyKLIP forward modeling, so 
we get both the marginals for each parameter as well as the overall evidence

• We can then compare the evidence terms for both the H0 and H1 locations run on the 
same location

Nested Sampling in PyKLIP
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Location of beta Pic b
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Evidence: lnZ = -463 Evidence: lnZ = -638

H1 H0



Model Comparison
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Evidence ratios can tell us which model is favored by the data.

Where H0 is the null hypothesis (α = 0, no planet) and H1 is the “planet” model with α as 
a parameter.

In this case: 𝑅𝑎𝑡𝑖𝑜 = !!"#$

!!#$%
= 2 ∗ 10"#

We can reject the null hypothesis with confidence. In other words, we are able to properly 
quantify the confidence with which we distinguish beta Pic b from the noise/residual 
speckles.



Synthetic planet at 25% FM Flux 
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Evidence: lnZ = -385 Evidence: lnZ = -399

H1 H0

SNR from residuals:
6.7𝜎
SNR from annulus:
3.8𝜎

Ratio = 106



Synthetic planet at 15% FM Flux
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Evidence: lnZ = -384.9 

H1 H0

Evidence: lnZ = -383.67

SNR from residuals:
3.3𝜎
SNR from annulus:
2.3𝜎

Ratio =  0.29



Synthetic Planet at 15% FM Flux in Different Position
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SNR from residuals:
3.8𝜎
SNR from annulus:
2.4𝜎Evidence: lnZ = -415 Evidence: lnZ = -418

Ratio = 20

H
1

H
0



Synthetic Planet at 10% FM Flux at this Position
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Evidence: lnZ = -413 Evidence: lnZ = -413.45

SNR from residuals:
2.4𝜎
SNR from annulus:
1.6𝜎

Ratio = 1.56



Running on noise
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H1 H0

Evidence: lnZ = -446.26 Evidence: lnZ = -444.6

Ratio = 0.19



• Using forward modeling, faint potential planets can be detected 

• Nested sampling can be used successfully to distinguish between the planet and 
background noise

– The confidence for this characterization depends on the noise level in that region as 
well as the brightness of the source

• Future: Bayesian Blind Detection— By forward modeling and running the 
characterization functions on locations of interest in the image, a fully-automated 
algorithm may be able to detect faint planets in a direct image and characterize them 
as such.

Conclusions
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